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This didactic paper summarizes the mathematical expressions needed for analysis of fluorescence 
anisotropy decays from polarized frequency-domain fluorescence data. The observed values are 
the phase angle difference between the polarized components of the emission and the modulated 
anisotropy, which is the ratio of the polarized and amplitude-modulated components of the emis- 
sion. This procedure requires a separate measurement of the intensity decay of the total emission. 
The expressions are suitable for any number of exponential components in both the intensity decay 
and the anisotropy decay. The formalism is generalized for global analysis of anisotropy decays 
measured at different excitation wavelengths and for different intensity decay times as the result 
of quenching. Additionally, we describe the expressions required for associated anisotropy decays, 
that is, anisotropy decays where each correlation time is associated with a decay time present in 
the anisotropy decay. And finally, we present expressions appropriate for distributions of corre- 
lation times. This article should serve as a reference for researchers using frequency-domain 
fluorometry. 
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INTRODUCTION 

Measurements of fluorescence anisotropy decays 
can reveal the size, shape, flexibility, and associative 
behavior of biological macromolecules [1-4]. Such 
decays are often measured in the time domain using 
time-correlated single-photon counting, as illustrated 
by the classic studies by Stryer and co-workers to re- 
veal the dynamics of immunoglobulin proteins [5,6] 
and numerous more recent publications on the dynam- 
ics and hydrodynamics of macromolecules [7-15]. In 
recent years, the alternative method of frequency-do- 
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main (FD) fluorometry has become more widely used 
by the biophysics community. This use is the result of 
commercially available instrumentation and published 
results which indicated the usefulness of FD measure- 
ments for the resolution of complex fluorescence in- 
tensity [16-20] and anisotropy [21-25] decays. In fact, 
FD measurements provided the first resolution of three 
decay times for a rigid molecule [26], a phenomenon 
first predicted by F. Perrin in the 1930s. 

The formalism for analysis of FD intensity decays 
has been described in detail in many publications [16-- 
18,27,28]. In contrast, the equations needed for analysis 
of the FD anisotropy decays have not been presented in 
detail and are summarized here. Our presentation pro-- 
gresses from the simplest case of a single rotational cor- 
relation time and a single intensity decay time, to more 
complex cases which involve global analysis of data ob- 
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tained for different excitation wavelengths and/or differ- 
ent decay times as the result of collisional quenching, to 
multiexponential intensity and anisotropy decays. Ad- 
ditionally, we described expressions for associated ani- 
sotropy decays and for correlation time distributions. We 
believe that the systematic approach, from the simpler 
to the more complex cases, provides the easiest manner 
to understanding the individual cases and allows an in- 
tuitive understanding that allows selection of the appro- 
priate model for a given situation. The models described 
here are available as part of the program library at the 
Center for Fluorescence Spectroscopy (CFS), which can 
be accessed via the internet, and are available in PC 
versions. We note that anisotropy decay analysis can 
also be accomplished using the Globals Unlimited soft- 
ware package developed at the Laboratory for Fluores- 
cence Dynamics (LFD), Urbana, Illinois. For convenience 
the mathematical terms are summarized under Nomen- 
clature at the end of the text. 

GENERAL THEORY 

Expressions for Intensity and Anisotropy Decays 

Assume that the sample is excited with vertically 
polarized light and that the emission is collected along 
an axis 90 ~ away from the incident light. The observation 
polarizer may be oriented either parallel or perpendicular 
to the polarization of the incident light (Fig. 1). This 
experimental geometry can be related to other equivalent 
geometries as described previously [29]. The intensity 
decay can be described by a sum of exponential com- 
ponents, 

I(t) = Ill (t) + 2I• (1) 

I(t) = ~ O~ i e -t/'ri = ~ oL i e -Fit (2) 
i i 

"J'. (~) r = l O n s  
I ( f )  = I l l ( f )  + 2 I •  

Fig. 1. Measurement of an anisotropy decay. The right side shows a 
hypothetical dansyl-labeled protein, with a lifetime and correlation 
time of 10 ns each. 

where I(t), Itl(t), and I• are the decays of the toal, 
parallel, and perpendicular components of the emission. 
For the present paper we assume that the intensity decay 
can be described by the multiexponential model [Eq. 
(2)], where ai are the preexponential factors, 'ri the decay 
times, F~ = "r~ -1 the decay rates, and n the number of 
decay times. We note that intensity decays can be non- 
exponential (i.e., not a sum of exponential components) 
due to a distribution of decay times [17,28] or transient 
effects in quenching [18], to name a few. Nonetheless, 
for the anisotropy analysis it is necessary only to have 
an expression which accurately describes the intensity 
decay. In this respect the multiexponential model is very 
powerful, and based on our experience, it is always pos- 
sible to model the intensity decay data with the multiex- 
ponential model [Eq. (2)]. 

The anisotropy decay is also assumed to be a sum 
of exponentials, 

r (t) = ~ ro  gj e -'/~ = ~ roj e-6nJ ' (3) 
Y Y 

where 0j = (6Rj)-1 are the rotational correlation times, 
Rj the rotational rates, gj the fractional amplitudes for 
each component in the anisotropy decay (Ej gj = 1.0), 
1"o] = rogj the amplitudes of each component in the 
anisotropy decay, and ro the total anisotropy observed 
at t = 0. In those cases where the instrumental time res- 
olution is adequate to detect the fastest amount in the 
anisotropy decay, ro is equal to the anisotropy observed 
in the absence of rotational motion during the lifetime 
of the excited state. 

The polarized components of the intensity decay are 
related to anisotropy decay by 

1 
Ill(t) = 5 I(t) [1 + 2r(t)] (4) 

1 
I . ( 0  = I ( t ) [ 1  - r(t)] (5) 

Measurement of an anisotropy decay using time-domain 
data typically requires taking the difference between the 
two larger quantities I,(t) and I •  (t). This is illustrated 
in Fig. 2, where we show hypothetical data for a spher- 
ical protein. In this example we assume that the intensity 
decay was a single exponential with a decay time of 10 
ns and that the fluorophore is rigidly bound to the pro- 
tein, which rotates with a 10-ns correlation time. While 
the total intensity decay I(t) = I,(t) + 2I• is a single 
exponential (left), the polarized components/,(t) and 1• (t) 
display more complex intensity decays [Eqs. (4) and 
(5)]. In particular, the parallel component shows an in- 
itial rapid decay due to rotation of the transition moment 
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Fig. 2. Time-domain measurements of an anisotropy decay. For these 
simulated data we assumed a decay time (,r) of 10 ns and a correlation 
time of 10 ns. 

of the fluorophore out of the vertical orientation (assum- 
ing ro > 0). The perpendicular component of the ani- 
sotropy decays more slowly because this component is 
populated by rotation from the vertical component. At 
longer times the decay becomes identical and indepen- 
dent of the initial photoselected difference due to rota- 
tional diffusion. 

In time-domain measurements of an anisotropy de- 
cay, one takes the difference between the poIarized in- 
tensity decays [Eqs. (4) and (5) and Fig. 2, right], 
normalized by the total intensity decay. Typically, there 
is considerable uncertainty in the anisotropy decay (Fig. 
2, right) because these values are calculated from the 
difference two larger values. 

FD anisotropy decays can be measured in a similar 
manner, by separate measurements of the phase and 
modulation of the parallel and perpendicular components 
[30]. Such measurements of the frequency response of 
each polarized component are illustrated in Figs. 3 and 
4. The phase angles of the parallel component are ex- 
pected to be shorter than that of the total decay (- - -) 
because the vertically oriented molecules rotate out of 
the vertical orientation (Fig. 3). In contrast, the hori- 
zontal component displays larger phase angles because 
this component is populated in part by rotational diffu- 
sion. Similarly, we expect the modulated amplitude of 
the vertical component to be larger, because of its more 
rapid decay (Fig. 3). 

One can imagine two methods to use the FD mea- 
surements to determine the anisotropy decay. One could 
measure the phase and modulation of the polarized com- 
ponents, relative to the modulated excitation, as shown 
in Fig. 4. One could then take the differences (and ratios) 
and analyze the resulting data file. However, the uncer- 
tainties in the individual measurements ([I and _L) would 
both contribute to the difference and ratio values. 

EXCITATION - - 

Ill 

z/~=~ s -i~, 

ACz AC. 

I l l ( t ) ' ~ I •  [ " "  _ AC. 

\ I , t Y  ~1 Aw Ac• 

Fig. 3. FD measurement of an anisotropy decay. For simplification, 
all DS components (bias) in this figure are taken as equal (DC I = 
DC• In real measurements the DC components can be different. See 
the text [Eqs. (12)-(18)] for a general description. 

For measurements of the anisotropy decay we 
prefer to measure directly the phase difference (A) 
between the polarized components of the emission and 
the ratio of the polarized and modulated components 
of the emission (A), as suggested in the pioneering 
paper by Weber [31] . Such measurements are illus- 
trated in Fig. 4 (bottom). By rotation of the emission 
polarizer, one directly measures the phase difference 
A between the vertical and the horizontal components 
of the emission. Simultaneously, one measures the 
amplitudes of the modulated components of the emis- 
sion. This results in the familiar form of the FD ani- 
sotropy data shown in Fig. 4 (bottom panels). We feel 
that these difference measurements provide the best 
approach for quantifying the small difference between 
the polarized components of the emission. Because 
this difference measurement does not determine the 
phase and modulation of the emission, relative to the 
modulated excitation, these data do not determine the 
intensity decay. Consequently, the intensity decay is 
determined by separate measurement of the phase 
modulation of the total emission, relative to the mod- 
ulated excitation, using magic angle polarization con- 
ditions. This decay is illustrated in Fig. 4 (top; --) .  

Analysis of FD Data 

In the FD the intensity decays are determined from 
the phase (qb,~) and modulation (rn,~) of the emission, 
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Fig. 4. Simulated FD data for an anisotropy decay, "r = 10 ns and 0 
= 10 ns. The top panel shows the phase and modulation of the po- 
larized components of the emission, relative to the modulated excita- 
tion. The bottom panels show the differential measurements of the 
phase angle difference (A,,) and modulated amplitude ratio (A,~ or r,,). 

relative to scattered light, each measured over a range 
of modulation frequencies (co), where co is in radians per 
second. These measured values are compared with val- 
ues calculated (c) for an assumed intensity decay law 
(+o,, and m~) using 

4,~ = arctan (N.,/D,~) (6) 

1 
mr = ~ ~ /N~ + D ~  (7) 

where 

N~ = t I(t) sincot dt (8) 
o 

Dco = f I (t) cos cot dt (9) 
o 

J = I I (t) dt (10) 
o 

The parameters describing the intensity decay [cq and 'ri 
from Eq. (2)] are determined by minimizing the differ- 
ences between the measured and the calculated values 
of dO~, and too, using 

X2 = ~ ( d ? , , ,  ~qbqbao)2 + ~ ( m ~ ,  -- mm)ZS_m (11) 

where v is the number of degrees of freedom and 86 
and 8m are the experimental uncertainties of the mea- 
surements. 

Anisotropy Decay Analysis 

Similar expressions apply for analysis of anisotropy 
decays from the FD data. In this case the experimental 
quantities are the phase angle difference between the 
perpendicular (+_L) and the parallel (qb,) components of 
the polarized emission (Fig. 3), 

Ao, = qb• - qbbl = arctan { DIll• - Nt~D" ~ (12) 
\ NI~V • + D,f) • / 

and the ratio of the parallel and perpendicular AC com- 
ponents of the modulated emission, 

A C , _  ~ + D~ (13) 
A~, - AC • "#N 2. + D 2 

where 

Np = J Ip (t) sin cot dt (14) 
o 
r 

Do = J Ip (t) cos cot dt (15) 
o 

The subscript p indicates either the parallel or the per- 
pendicular component at the emission. These expres- 
sions were presented previously in Refs. 30 and 31 in 
somewhat different forms. It should be noted that the Np 
and Dp values are not normalized by the total intensity, 
as was the case for analysis of the intensity decay [Eqs. 
(8)-(10)]. 

We note that A,, is the ratio of the AC components. 
and not the ratio mjm• of the modulations of the polar- 
ized components. The modulations of the polarized com- 
ponents are 

AC, 1 
- - ~ ~  (16) m, DC(Gxc 

AC• 1 
- - -;X/Naj. + D~ (17) 

m• DC • all 
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where m~xc denotes the modulation of the incident light 
and Jll and J_l_ are the steady-state intensities of the po- 
larized components 

Jp = J Ip (t) dt (18) 
0 

It is seen from Eqs. (13) and (16) that 

A,~-  m;I J" (19) 
171• J •  

The meaning of A,, is comparable to that of the in- 
tensity ratio of the polarized steady-state intensities. We 
prefer to present this observable as the modulated ani- 
sotropy [22], 

A,, - 1 
r., - (20) 

A o , + 2  

The modulated anisotropy has properties of both the 
steady-state anisotropy (r) and the fundamental aniso- 
tropy (ro). More specifically, at modulation frequencies 
which are low compared to the correlation time(s), r,, 
approaches r. At modulation frequencies much higher 
than the correlation time(s), r approaches ro. 

The parameters describing the anisotropy decay are 
obtained by a nonlinear least-squares analysis of the data 
[32-34], by the minimization of the goodness-of-fit in- 
dicator 

= I ~ ( A , ~ - A , , ) 2 +  I ~ / A , , -  )2 (21) 

where ~A and gA are the uncertainties in the data and 
v is the number of degrees of freedom. For calculation 
of X 2 we have chosen values of gA and gA to give 
approximately equal weight to the differential phase (A,,) 
and modulation (A,~) data. 

Method of Measurement 

Determination of an anisotropy decay requires 
knowledge of the total intensity decay and the difference 
between the paralM and the perpendicular components 
of the decay. In the time domain this is usually accom- 
plished by measuring the time-dependent decays of the 
parallel and perpendicular components of the emission, 
/,(t) and I_L (t). The weighted sum [/,(t) + 2I_1_ (t), Eq. 
(1)] can be analyzed to obtain the intensity decay law. 
The difference [/il(t) - I_L(t)] can be analyzed to recover 
r(t) [35-37], although some researchers prefer to analyze 
simultaneously the measured decays I,(t) and I_l_(t) in 

terms of the intensity and anisotropy decay parameters 
[37,38]. 

The FD anisotropy determination also requires two 
separate measurements. Although we have chosen not 
to do so, it is possible to measure independently the 
frequency response of/,(t) and I_L(t), each relative to 
scattered light, and to use these frequency responses to 
recover the anisotropy decay [30]. However, this ap- 
proach requires calculation of the differences (Ao, and 
Ao,) between larger numbers, and hence a higher uncer- 
tainty in the value of A,, and A,, Hence, we first mea- 
sure the intensity decay using magic angle or rotation- 
free polarization conditions [39, 40]. These data (qb~ and 
too,) are used to recover the intensity decay law I(t) in 
terms of a,. and 'ri. These parameters are held constant 
in the subsequent anisotropy analysis. The second mea- 
surement is then a difference or ratio measurement be- 
tween the polarized components of the emission, to 
determine A,~ and A,,, respectively. The data are then 
analyzed in terms of Eqs. (14)-(20) to recover the ani- 
sotropy decay law. 

ANISOTROPY DECAY MODELS 

A large number of anisotropy decay models are 
possible. For clarity and ease of presentation, we use 
the term DIFXYZ to indicate an anisotropy decay model. 
The letters DIF originate with the term DIFferential 
phase, as used by Weber [31]. The letters X and Y 
refer to the number of decay times in the intensity 
decay and in the anisotropy decay, correlation time, 
respectively. The letter Z is used to indicate whether 
the value of ro is assumed to be known (Z=R) or 
unknown (Z=O). Hence, DIF23R refers to a model 
in which the intensity decay is represented as a double 
exponential, the anisotropy data are analyzed in terms 
of three correlation times, and the total anisotropy ro 
is assumed to be known. Recall that the intensity decay 
is measured separately and that the (Y.-i and % values 
are held fixed during the anisotropy analysis. Hence, 
the DIF23R anisotropy analysis has five variable pa- 
rameters, three 0j and two gs values. In general, it is 
preferable if the value of ro is known, as this reduces 
the number of variable parameters. If ro is not knowr~, 
then there are six floating parameters in the DIF230 
model. However, we caution that if one assumes a 
value of to, and it is incorrect, then the least-squares 
analysis will introduce extra correlation time into the 
anisotropy decay. Unless indicated otherwise the de- 
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cay times and correlation times are not associated [41- 
43]. 

We now present some specific anisotropy decay 
models. Of course, it is possible to write generalized 
formula. However, we frequently find it useful to ex- 
amine the specific models, particularly as these models 
are being coded into the data analysis program. 

Calculation of A,o and A,, requires knowledge of 
Nit, N• DII, and D• [Eqs. (12)-(15)]. These terms are 
given by 

1 
= (,4 + 2B)  

N .  = (A - B) 

1 
D,, = ~ (C  + 2D) 

(22) 

(23) 

(24) 

1 
D• = ~ (C - D) (25) 

where 

c ~  (26) 
A = gin2 + F2 

B = ~ ct~ co ~ roy (27) 
�9 . co 2 + ( r i  + 6R/ )  2 

OLiF i 
c = 7 (28) 

�9 E (o;" (Fi + 6R]) 2 (29) 
D = ~c~,  ; to + (V,+  6Rj) 

Single-Exponential Intensity and Anisotropy Decay 
(DIF110) 

The simplest case is when both the intensity and 
the anisotropy decay as single exponentials. In this case 
the transforms are given by 

N, 

o~+r~) 

= 1  F 
D,, 

o ~ 7 r  :) 

2rom .q 
+ m2+(F+6R)2 j (30) 

roo~ . ] 
~2+( r +6R) 2  j (31) 

2 ro ( r  + 6 R ) ]  
+ o , :+ ( r+6R) : j  (32) 

ro(F + 6R) ] 
o2+ (F + 6R)2J (33) 

For this simple case it is practical to reduce these expres- 
sions to a simpler expression which directly yields A,, 
and A,,. Using Eqs. (30)-(33) and (12)-(15), these val- 
ues are given by 

tanAr = 3tovro (6R,) (34) 
mo (1 + r 2) + (2 + ro) (GR,)  + (6R,) 2 

= / [ ( l + 2 r o ) c o r  + [ l + 2 r o  + 6RT] 2 

A~ V [(1-ro)C~ 2 + [ 1 - r o  + 6Rr] = 
(35 )  

where m o =  (1 + 2to) (1 - I"o). Equation (34) was 
described originally by Weber [31]. In this simple model 
the variable terms are 0 and ro. If the value of ro is 
known, then there is only a single variable 0 in the DIFllR 
model. In general, both the intensity and the anisotropy 
decays of biological molecules are multiexponential, so 
this simple case occurs only infrequently. The main use 
of the single-correlation time program is as a starting 
point for further analysis by the multiexponential models. 

Multiexponential Intensity and Anisotropy Decay 

A more common occurrence is for the sample to 
display multiexponential intensity decay, for which one 
wishes to recover multiple correlation times. In the case 
of a double-exponential intensity decay and the presence 
of three correlation times, the transfers are 

. . . .  2~ (36) A = =rgT+r? + ~2+r1 

- rOl -t r02 + r03 
B-~1o~[0~2+(i.1+6R1) 2 t o 2 + ( r l ~  to2+(Fl+6R3)2] 

+ r01 to2 + r03 

c = o2r  (38)  
,. +r? ~.2+r~ 

[ r01 (rl + 6R1) �9 r02 (r l  + 6R2) I- r03 (r l  + 6R3) ] 
D = ~x[to2+(rl+6Rl)2~ ~%7-~1+6--~2 ~2+(rl+6R3)2 j 

[ rol(r2+6R1) q roz(r2+6R2) ~ r03(r2+6/h) ] (39) 
a2L~z+(rz+6Rx)2 to2+(F2+6R2) 2 oJ2+(F2+6R3) 2] 

During the least-squares analysis programs, it is as- 
sumed that the intensity decay law, that is, the values 
of cq and "ri, are known from a separate measurement. 
Hence, the variable parameters are the three correla- 
tion times (0j) and anisotropy amplitudes (roj). Reso- 
lution of these correlation times is a difficult task, 
particularly if the largest and smallest correlation times 
differ by less than a factor of 2.0. A successful and/ 
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or unique three-correlation time analysis requires data 
over a wide range of frequencies. A multiexponential 
intensity decay is desirable because this extends the 
range of measurable frequencies. For instance, the 
shortest component in the intensity decay dominates 
the signal at higher modulation frequencies, allowing 
measurements to be made to higher frequencies before 
the modulation of the emission becomes too small for 
reliable measurements. Also, three correlation times 
are most easily recovered when the correlation times 
are widely spaced, as often occurs for membrane- or 
protein-bound probes. The ability to detect three cor- 
relation times for small rigid and asymmetric molecule 
is probably aided by slip rotation diffusion, which re- 
sults in a greater range of correlation times than can 
be expected for hydrodynamic diffusion. 

Resolution of three closely spaced correlation time 
is a difficult task, which often requires the use of mul- 
tiple measurements, such as in the presence of quenching 
to vary the relationships among "ri, 0j, and to [44]. These 
methods are described below in more detail. 

For the analysis of complex anisotropy decays, it 
is essential to consider correlation between the param- 
eters. Correlation allows the value of one parameter 
(roj or 0s) to vary, without changing the value of • 
by a compensating change in another parameter value 
[33,34]. We found that the uncertainties estimated from 
the usual assumptions of nonlinear least squares (un- 
correlated parameters) are severalfold smaller than those 
found by the method of Johnson [33,34], which esti- 
mates the range of parameters consistent with the data 
by a coarse search of the • surface. In the 
comparison of complex anisotropy decays, we are often 
interested in the range of values, for a given parame- 
ter, which are consistent with the data. For instance, 
suppose that the sample is a protein which displays 
three correlation times (01, 02, and 03) and that the 
solution conditions are changed and the protein again 
displays three correlation times (0[, 0~, and 0;). Sup- 
pose that the value of 03 and 0; represent overall ro- 
tational differences and that these values are slightly 
different. One may wish to determine whether this dif- 
ference is firmly supported by the data or whether the 
values are within the uncertainty range for correlated 
parameters. For this purpose of finding the maximum 
range of parameter values consistent with the data, we 
prefer the more rigorous method of examining the X~ 
surfaces [26,44,45]. Each parameter is held at fixed 
values around the expected value, and the X~ minim- 
ization algorithm is run again to allow the remaining 
parameters to vary. If X~ is not changed significantly, 
then the altered parameter value is still consistent with 

the data. If X~ is elevated significantly, then the al- 
tered parameter value is not consistent with the data, 
irregardless of the extent of correlation. This proce- 
dure is rather time-consuming because it requires mul- 
tiple analyses and typically requires interactive input 
from the individual performing the analysis. However, 
we believe that the flatness or steepness of the X~ 
provides an unambiguous evaluation of the confidence 
interval for each parameter. The 67% confidence in- 
terval is given by the point where the value of X~ 
increases by the F statistic for the degrees of freedom 
for the experiment [32,46]. 

Multiexponential Anisotropy Decay with a 
Known r o 

Frequently the total or fundamental anisotropy (1"o) 
can be determined from a separate experiment, such as 
measurement of the steady-state anisotropy in a vitrified 
solvent, as has been used for many years [47,48]. Most 
fluorophores, and even solvent-sensitive fluorophores such 
as tryptophan and indole, display wavelength regions of 
constant anisotropy where ro can be measured in the 
frozen solution, and where the temperature-dependent 
solvent effects are not likely to alter r o [49,50]. If r o is 
known, then it can be constrained in the anisotropy de- 
cay analysis. This constraint generally increases the sta- 
bility and/or resolution of the analysis because the program 
is forced to account for the total anisotropy and because 
there is one fewer variable parameter. Knowledge of ro 
is particularly advantageous when a rapid correlation time 
is present in the anisotropy decay, in which case the 
apparent anisotropy at t = 0 can be less than I"o due to 
the limited time resolution of most instrumentation. 
However, it should be noted that fixing ro at a value 
larger than the actual value will result in the appearance 
of a rapid correlation time to account for the excess 
anisotropy. 

If the value of ro is known, there are (m - 1) am- 
plitudes (gj). The A and C terms do not contain the 
anisotropy decay components and are the same as Eqs. 
(26) and (28). The other terms are given by 

,-1 ,~gr 5" ~o,~ig~ (40) 

~.=.' ag i (r,+6R/) ~ ag,,(r,+ 6Rj) (415t 
O = r@a@,o,2+(r,+6ni)  ~ + ro Z 2+(r,+6R,) 2 

In these expressions one of the gj values is determined 
from the remainder by ~ gj = 1.0. In particular, we 

J 

calculate the last term of the sum using g m =  1 --  ~ g j .  
jf~m 
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Suppose that the sample displays two decay times 
and two correlation times and ro is known (DIF22R). 
Once again, the A and C terms are given by Eqs. (26) 
and (28). The other terms are 

g~ ( l - g , )  l 
B = roa,", " ,~+(r -~6R32 + ~ 2 + ~ R ~ ) 2  j 

[ g' (i-~') l ( 4 2 )  
+ roa2", ",2+(F;~+6RI)2 + ",2+(F2+6R~2 j 

gl (F1+6R0 ( l - g 3  (F1+6R2)] 
D = ro~, " ,2+( r ,+6R,)  ~ + ~ - - ~ + ( r ~  .] 

r [ & (r2+6R,) ( l - g , )  (r~+6R~) l (43) 
+ 0~2 L~2+(F2+6R~) 2 + ",2+(r2+6R~) 2 j 

Hindered Rotators  wi th  a K n o w n  r o 

Fluorophores in lipid bilayers often display hind- 
ered rotational motions, which are revealed by nonzero 
anisotropy values (r.) at times much longer than the 
intensity decay times [37,51-53]. For the simple case of 
a single decay time and a single correlation time for the 
hindered motion, 

I, (I) = ~[(I +2r , )  e -n  + 2(to - r . )  e-O'+~RY] (44) 

Ix( t )  = ~ [ ( 1 - r , ) e  - r '  - (ro - r .)e-0"+~)t] (45) 

Application of the transform equations, (14) and (15), 
yieIds 

i [(i + 2(ro- r . ,  l 
~' = 3 L (0,5 + r~) + ~o~~ (F u ~R)~J (46) 

,Fc,-r.l  1 
Nx = g L(~2 + r;) - ~ + ~ u 6R)2J (47) 

i [(1 + >.)r  2(ro - ~~ +- 
o,, = 5 [ ( ~  + r~) + 7 ~ ;  ~ + 6R)~ J (48) 

1 [(1 - r.)F (ro - r . ) ( r  + 6R) l 
D. = 5 L(~ + r=) - =~ u T r u  6R)~ J (49) 

For this simple case of a single decay time and a single 
correlation time, one can obtain simple expressions for 
A", and A,, using Eqs. (46)-(49) with Eqs. (12) and (13), 
yielding 

ta.,',. = 3.,. (,'o - r.) (6R.) (50) 
mo (1 + ",2"r2) + S  (6R'r) + m= (6R'r) z 

/ [ (1  + 2r0) ",'r] z + [1 + 2,'o + (1 + 2r,) (6R'r)] z (51) 
A,.o = ~ /  [(1 - ro)",'r] 2 + [1 - ro + (1 - r.)(6R'r)] 2 

where rn~ = (1 + 2r.)(1 - r , )and  S = 2 + ro - 
r~ (4to - 1). The expression for A", has been described 
previously [54,55]. 

GLOBAL ANISOTROPY DECAY ANALYSIS 

Global Anisotropy Analysis with Quenching 

It is frequently difficult to obtain adequate resolu- 
tion of complex anisotropy decays. One origin of this 
difficult is a mismatch between the correlation times and 
the intensity decay times. Hence, resolution of the ani- 
sotropy decay can be increased if the anisotropy data can 
be collected over a wider range of decay time. This can 
be accomplished by measurements of the anisotropy data 
for progressively quenched samples, followed by global 
analyses to recover a single anisotropy decay. The 
quenching can be any process which decreases the decay 
time, and we have used both collisional [16] and energy 
transfer [56] quenchers. The resolution is improved for 
several reasons, including measurements over a larger 
range of frequencies, measurements for a larger range 
of intensity decay times, and the availability of multiple 
data sets for the same physical process. The theory for 
global anisotropy analysis in the presence of quenching 
is conceptually simple. It is assumed that the quenching 
does not alter the anisotropy decay law, and alters only 
the intensity decay. Suppose these are measurements for 
q quencher concentrations. The intensity decay at each 
concentration of quencher [tic] is analyzed to obtain the 
intensity decay, which is generally multi or nonexpo- 
nential due to transient effects in quenching [18] or non- 
radiative energy transfer [56]. Hence, the intensity decay 
Iq(t) and the er  and "r~q values are known for each quenched 
sample. One then measures the FD anisotropy data for 
each of the quenched samples (A,,q and A",q). These 
data are compared with the anisotropy data calculated 
(Ao",q and A,o q) for an assumed anisotropy decay using 
the known values of e~i q and 'ri q for each quencher con- 
centration. Hence, the analysis is unchanged except that 
the sum in Eq. (19) extends over both ~o and q. As 
before, the value of ro can be fixed [Eqs. (40) and (41)] 
or variable [Eqs. (26)-(29)]. 

Multiple  Excitat ion Wave lengths  with  Quenching 

An alternative approach to obtaining increased res- 
olution of an anisotropy decay is the use of multiple 
excitation wavelengths. Generally, the value of r o de- 
pends upon the excitation wavelength (X). Since ro is a 
measure of the angle between the absorption and the 
emission transition moments, the use of different ro val- 
ues results in different contributions of each rotational 
motion to the anisotropy decay. In general, one does not 
expect the rotational motions to be sensitive to the en- 
ergy of the absorbed photons, so that the correlation 
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times will not depend upon the excitation wavelength 
(X). The value of the fundamental anisotropy can be 
known from other experimental data [Eq. (52)] or un- 
known [Eq. (53)]. At each excitation wavelength (X), 
the anisotropy decay is given by 

r x (t) = r x ~ gj e-t/~ (r x known) (52) 
J 

r x (t) = ~2 roXj- e-'/~ (ro x unknown) (53) 
J 

It should be noted that there is a new set of anisotropy 
amplitudes to, x. for each excitation wavelength. If there 
is a single data set at each wavelength, such as for mea- 
surements performed without quenching, then the ani- 
sotropy amplitudes are nonglobal, that is, determined by 
the single data set. If there is more than one data set at 
each excitation wavelength, such as data at several 
quencher concentrations, then the anisotropy amplitudes 
are partially global, being the same for the same exci- 
tation wavelength at all quencher concentrations. 

One complication which arises in global analyses 
of anisotropy data is the possibility of different intensity 
decays for each excitation wavelength. For fluorophore 
fluid solvents, the intensity decays generally do not de- 
pend on the excitation wavelength. However, this is not 
generally true, particularly for solvent-sensitive fluorop- 
bores in environments of intermediate viscosity [57-61]. 
For such conditions the intensity decay can depend strongly 
on the excitation wavelength, particularly if the excita- 
tion is on the red (long-wavelength) edge of the absorp- 
tion spectrum. For generality, it is best to assume that 
I(t) is dependent upon excitation wavelength (X) as well 
as quencher concentration [q]. Hence 

/Xq(t) = Ii)q (t) + 2/xq (t) = 2 a/xq e-'/'~; 
i 

= E @q e-'rq~; (54) 
i 

For this case the transforms must be calculated for each 
[q] and k and are given by 

N~q = fI~q(t) sin cot dt (55) 
P 

D xq = Jlxq(t) cos o~t dt (56) 

The calculated values of A and A~ for each X and [q] 
are given by 

Xq ,X. ~. kq 
[Dip N2q -- Nil q D• 

Ac xq -- arctan ~N~kq N!q L2~_ D~q Dk~q) (57) 

A~xq { (mIen)2 -- (Dllq) / (58) 

The goodness of fit is calculated from the global • 

g-A 
2 

+ ~ o,~q \ ~A 
(59) 

where the sum extends over the modulation frequencies 
(~o), wavelengths (k), and quencher concentrations (q). 
The transforms can be calculated from Eqs. (26)-(29) 
for each k and [q]. For an unknown value of ro these 
terms are given by 

~Xq~ (60) AXq Y 
7" 2 + 2 

gkq = ~" a~qt"~ j~-o32 + (F/x~0q] "-t- 6Ry) 2 (61) 

IN./kq F~q (62) 
Cxq Y "7 o~ 2 + (F,.Xq) 2 

ro: (F~ xq + 6R:) 
DXq x? x? (63) 

+ (r;q + 6Rj)  

We note that in these expressions [Eqs. (60)-(63)] the 
values of ro) are dependent on the excitation wavelength 
(X), whereas the values of R i are not wavelength deper~- 
dent. The intensity decay parameters (~Xq and F) are 
dependent on the quencher concentration (q) and, de- 
pending upon the probe and solvent conditions, may be 
dependent on the excitation wavelength (X). Similar 
expressions apply if the ro x values are known, except 
that the sum of the ro x values is held fixed at the known 
values, that is, EroXs4 = ro x. At this point the explicit 
listing of examples seems unnecessary.  It is now 
straightforward to write the explicit expression for any 
desired model. These expressions are easily written from 
Eqs. (60)-(63) and by recalling that the values of ai xq 
and "rg xq are specific for each data set. 

COMPLEX ANISOTROPY DECAY MODELS 

Associated Anisotropy Decays--Mixtures of 
Fluorophores 

In all the proceeding sections we assumed that there 
was no association between the intensity decay times and 
the correlation times of the anisotropy decay. For a mul- 
tiexponential model this means that the individual flno- 
rophore species each display multiple decay times and 
multiple correlation times. However, it is possible that 
the fluorophore exists in two or more environments, each 
with a characteristic intensity decay and anisotropy de- 
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cay or, alternatively, that the sample contains two or 
more different fluorophores, each with a characteristic 
intensity decay and anisotropy decay t ime. The latter 
cases are called associated anisotropy decays because 
each intensity decay is associated with an anisotropy 
decay [41-43]. 

With the presently available resolution it is usually 
not practical to consider multiexponential intensity and 
anisotropy decays for each species in an associated sys- 
tem, so that it is more common to speak of the associ- 
ation between a single decay time with a single correlation 
time, rather than a multiexponential intensity decay with 
a multiexponential anisotropy decay. Hence, we limit 
the discussion to the case of a single decay rate and 
single correlation time for each species. For this asso- 
ciated model the anisotropy decay is given by 

r(t) = E fk(t) rk(t) = ~ fk(t) rOk e-6Rkt (64) 
k k 

where rk(t ) is the single exponential anisotropy decay 
associated with the kth species in the sample. For this 
case of a mixture of fluorophores, each of which displays 
a single decay time, the intensity decay is given by 

I(t) = E ,,&e-W (65) 
k 

where "/k represents the intensity at t = 0 of the kth spe- 
cies and Fk its decay time (Fk = 'rk-~). For the case of 
the same fluorophore in two or more different environ- 
ments, the radiative decay rates are typically the same, 
in which case the ~/k values represent the fractional pop- 
ulation in each environment. At any point in time the 
fractional contribution of the kth species is given by 

~/ee-rkt 
fk(t) - ~, Tree_Fro t (66) 

m 

The terms needed to calculate the transforms are given 
by 

rok "/k o~ 
B = ~ t~ 2 + -(F-k + 6Rk) z (67) 

rok "/k (Fk + 6Rk) (68) 
D = ~ c o  2 + ( F k +  6Rk) 2 

where A and C are the same as Eqs. (26) and (28). Note 
that Eqs. (67) and (68) do not contain the cross-sums 
which are present in Eqs. (27) and (29) because each 
intensity decay k is associated with the correlation time 

k. For the case of two fluorophores the A and C terms 
are given by Eqs. (36) and (38), and 

rol "/1 to to2 "/2 to (69) 
B = to E + (rl + 6RI) z + toE + (ra + 6Rz): 

D = rm 'Y~ (F1 + 6R~) roz "/2 (Fz + 6R2) 
~o 2 + (F~ + 6RI) 2 + (70) to2 + (F2 + 6R2) 2 

It is important to understand the meaning of the terms 
in this associated model. In Eqs. (69) and (70) the values 
rol and roz represent the fundamental anisotropies of the 
two species, and not partial amplitudes of a multiexpo- 
nential decay as in the case of a nonassociated model. 
Similarly, R1 and R2 represent the rotational rates of the 
two species. The terms "y1 and "/2 represent the t =  0 
intensities of the two species. 

This mixture model usually contains fewer variable 
parameters than does the nonassociated model. Depend- 
ing upon the experimental system, it may be possible to 
measure the decay time of the fiuorophore in each of the 
environments. In this case the values of F1 and F~ are 
known. Alternatively, the intensity decay sample dis- 
playing both decay times may be determined from a 
multiexponential analysis. In this case the values of "/k 
and Fk are known. The data can be used to recover the 
0k and rOk values. For a single fluorophore in two en- 
vironments the values of rok are expected to be the same. 
Hence, if the Fk and rok values are known, then the FD 
anisotropy data can be used to calculate the value of the 
fractional amplitude ~/k [43]. 

Suppose now that the species in the mixture each 
display a more complex multiexponential intensity and 
anisotropy decay. The intensity decay of each species 
(k) is thus given by 

lk (t) = ~ aki e -'/'ki (71) 
i 

where OLki is the ith component of the intensity decay of 
species k, and "rk,. is the decay time of this component. 
The anisotropy decay of each species is also assumed to 
be multiexponential, 

rk(t) = ~rkj e-t/% (72) 
J 

where rk(t) is the anisotropy decay of the kth species, 
and 0kj is the correlation time of this compound (j) in 
the anisotropy decay of the kth species. 

It is important to be clear about the assumptions of 
this model. The model is associative in that the intensity 
decay of species k, Ik(t ), is associated with the anisotropy 
decay of species k, rk(t). However, we are assuming a 
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nonassociated model for the anisotropy decay of each 
species. The total intensity decay is given by 

I(t) = ~, %Ik(t ) (73) 

where % represents the fractional amplitude at t = 0 of 
the total decay due to the kth species, s  = 1. For the 
moment, we assume that the k species are due to the 
same fluorophores in k different environments. In this 
case we expect the radiative decay rates to be the same 
and the initial amplitudes to reflect the relative amounts 
of the fluorophore in each environment. For instance, 
consider a fluorophore to be partitional between two en- 
vironments, free (F) and bound (B). Then, % = CF and 
"/2 = Cs, where CF and CB are the concentrations of the 
free and bound forms, respectively. 

The polarized components of the intensity decay for 
each species are given by 

1 
Ie,l(t ) = -~ I~(t) [1 + 2r~(t) ] (74) 

1 
Ie• = -~ Ik(t ) [1 -- re(t)] (75) 

More explicitly, with Fu = %~-~ and 6Re: = 0 -a, one 
obtains 

1 

2 + ~ ~ ~ c~k/re, e-cru + 6% )' (76) 

1 e - rk/t 
lk• = 3 ~i %i 

! 
3 ,~" ~ a~/r~, e - ( ru+ 6Rk2, (77) 

The total intensity of each polarized component is given 
by 

/~l(t) = ~, % Ikl, (0 (78) 
k 

I . ( t )  = ~, % Ik• (t) (79) 

After Fourier transformation of Eqs. (78) and (79) with 
Ik, and Ik_L given by Eqs. (76) and (77), one obtains 
expressions for N~, N_t_, DI~, and D.L which have the 
same form as Eqs. (22)-(25). However, the quantities 
A, B, C, and D now have more complicated forms: 

A = ' OJ 2 "t- F 2 i  

%%ir~:03 (81) 
B = ~ ~. ~ ~ 2 + (F2i -~ 6R~:)2 

Y'~~ (82) 
c 032 2 k i + F u  

D = Z Z ~ YkO:kirkJ (Fki + 6Rq) 
i j to a + (F2i + 6R,i) 2 (83) 

For clarity it seems best to write an explicit expansion 
of Eq. (22). For the case of two species (k = 1,2), each 
with two decay times (i = 1,2) and two correlation times 
(j = 1,2), we have 

N~(t) = -5- ~ + ~,2 

~/2 taj O[21 gg22 

+ -5--[ '~" 0,2 + (r. + 6R,/2 + 0,~ + (r. + 6<~)2 (84) 

+ ~ ~o 2 + (F12+ 6Rn) 2 + ~ 2 +  (F12+ 6Rlz) 2 

2y2o~[ ( r21 r_.22_ ) 
+ - ' 7  0:n ~2+ (F,_I+ 6R21) 2 +to 2+ (F21+ 6R22) = 

+ a = (  r21 r= ) ]  
J + (F22 + 6R21) 2 + to 2 + (F=z + 6R22) a 

We note that a complete resolution of the multiple 
intensity decay and correlation times for such a system 
is a formidable task. The resolution may be simplified 
by adding information, from other experiments, which 
fix some of the parameters. For instance, in the case of 
a two-species model, it may be possible to determine 
independently the intensity decay (%. and 'rki) and ani- 
sotropy decay (rk: and %-) law. In this case the only 
remaining parameter would be the amplitude (or con- 
centration) of each species (Ck). 

Distributions of Correlation Times 

In all the above models we assumed that the ani- 
sotropy decays are a sum of exponentials. However, there 
are many situations where the anisotropy decay is known 
to be nonexponential, such as for dyes intercalated into 
DNA [62-64] or probes embedded in the anisotropies 
and hindered environment of a membrane [65,66]. By 
analogy, it seems probable that the anisotropy decays of 
tryptophan residue in proteins may also be nonexponen- 
tial since these two exist in a hindered environment. In 
fact, experimental studies of the anisotropy decay of pro- 
teins [6%73] and molecular dynamics calculations [74-- 
75] have shown that the tryptophan anisotropy decays 
often show the properties of hindered motions. 

The cases described above could be described in 
terms of the distribution of correlation times. The shapes 
of the distribution would indicate the time ranges where 
most of the motions occur. Hence, as a final model we 
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describe the formalism for analysis of FD anisotropy 
data in terms of the distribution of correlation times. 

To describe the distributions we assume that each 
mode (kj) of the distribution is described by a mean (0kj) 
of the distribution and full-width at half-maximal inten- 
sity (hWkj), which in turn are described by normalized 
probability functions [P~.(0)]. These can be Gaussian (G), 
Lorentzian (L), or other functions. For these two cases 

, I  [ ~ \  
~/0) - [ ~ oxp~- 2 4 ) fo~~ 0~ >_<0o (85) 

0 

( ~  hwk/2 
P~(0) - (o - %)2 + (hw#2)2 fo~ o->o (86) 

for O < 0 

where o-ky is the standard deviation of the untruncated 
Gaussian and Z~ and ZL are the normalization factors 
defined as 

00 

0~ 

f hwk/2 
Z L  = ( 0  - -  0k j )  2 @ (hWk/2) 2 dO (88) 

o 

The half-width of the Gaussian (hwky) is related to its o-kj 
by hwky = 2.355 crky. For such an anisotropy decay time 
distribution there is an amplitude at correlation time 0 
which is given by 

rk(t, 0) = ~ rj:'ky (0) e-t/~ (89) 
] 

We note that for a given correlation time 0 there may 
be contributions from more than one mode of the distri- 
bution. One cannot directly observe the anisotropy decay 
for a given correlation time but, rather, observes the 
entire anisotropy decay, which is given by the integral 
of Eq. (89) over theta, 

t~ 

r~(t) = J rk (t, O) dO (90) 
0 

The values of NIl, N_l_, D,, and D.k are calculated using 
Eqs. (22)-(25) with quantities A and C given by Eqs. 
(80) and (82). The exprressions for B and D now have 
the form | 

B= ~, ~ ! ~akirk, oJPk,(O) dO (91) 
�9 - o 2 + (F~/ + 6Rkj) z 

| 

D = E E E  f-~,~,r,j (r,, + 6Rk/)Pkj(O)do (92) 
�9 3 ~ r 2 + (F~- + 6Rkj) 2 

It should be noted that in the above expressions param- 
eter 0 is also involved in terms 6Rky by the relation 6Rky 

0 - 1 .  

SUMMARY 

In this review we summarize the expressions needed 
to analyze FD anisotropy data. Expressions are provided 
for single- and multiexponential intensity and anisotropy 
decays, as these apply to the usual nonassociated decays 
and to associated anisotropy decays. And finally, we 
discuss correlation time distribution, which can allow 
visualization of dynamic processes in macromolecules. 
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NOMENCLATURE 

tl 
• 

I(t) 
ai 
Ti 
ri 
0i 

ro 
gs" 

P (0) 
eL(0) 
r(t) 

Parallel 
Perpendicular 
Intensity decay 
Preexponential factor in the intensity decay 
Decay time in the intensity decay 
Decay rate = (%)-1 in the intensity decay 
Correlation time = (6 Rj)-I in the anisotropy 
decay 
Rotational rate in the anisotropy decay 
Fundamental anisotropy 
Fractional amplitude in the anisotropy decay 
Total amplitude in the anisotropy decay 
Sum of the squared and weighted deviations 
Gaussian distribution of correlation time 
Lorentzian distribution of correlation time 
Anisotropy decay 

Subscripts 
c Calculated value 
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k kth species 
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